

NSTX Research Plan – FY04-06

Contributing to Fusion Energy Science on a Broad Front

Martin Peng

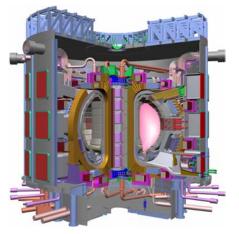
Oak Ridge National Laboratory, UT-Battelle

@ Princeton Plasma Physics Laboratory

For the NSTX Team

Budget Planning Meeting – FY 2006 Office of Fusion Energy Sciences

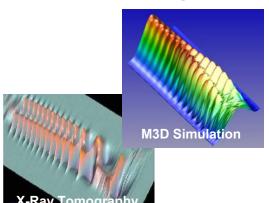
> March 16 – 17, 2004 Germantown, Maryland


Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar **Nova Photonics** NYU ORNL **PPPL PSI** SNL **UC Davis UC Irvine UCLA UCSD U** Maryland **U New Mexico U** Rochester **U Washington U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo **JAERI** loffe Inst **TRINITI KBSI** KAIST ENEA, Frascati CEA. Cadarache

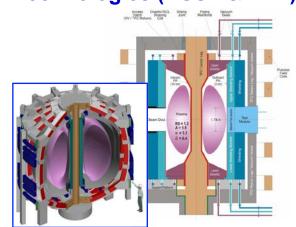
IPP, Jülich IPP, Garching

NSTX Team Contributes to Fusion Energy on a Broad Front Through Scientific Investigations

Burning Plasma (ITPA)


NSTX Team

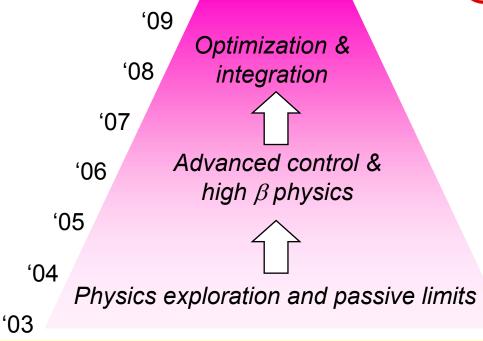
Configuration Optimization


Fundamental Understanding

Scientific Topics

- Turbulence
- Stability
- Waves & Energetic Particles
- Magnetic Flux Generation
- Boundary Physics
- Integration

Materials, Components, Technologies (NSST & CTF)


NSTX Collaborators Directly Funded by DOE Make **Crucial Contributions**

Institution	Research Topic	Institution	Research Topic
Columbia U	MHD stability & mode control Stellar x-ray spectroscopy	Nova Photonics	MSE – CIF & LIF Ultra-fast imaging (~10 ⁶ /s)
Comp-X	CQL-3D kinetic modeling of RF heating & current drive	NYU	Planar LIF Transport & RF modeling
GA	CHI equilibrium, RF physics Plasma control Poloidal field coil start-up	ORNL	HHFW & EBW physics & technology Boundary and pedestal physics RF & transport modeling
INEL	Tile surface & dust analysis	PSI	Ultrafast imaging (~10 ⁶ /s)
Johns Hopkins U	USXR tomography & diagnostics	SNL	Plasma-facing material
LANL	Visible and infrared imagingUltra-fast turbulence imagingCHI plasma stability modeling		Material surface analysis
		UC Davis	FIReTIP n, B & fluctuations
		UC Irvine	Turbulence & fluctuations
• Edg	Edge SOL physicsEdge plasma turbulenceStellar x-ray spectroscopy	UCLA	Reflectometry & fluctuations
		UCSD	Fast probe, HHFW modelingFar SOL turbulent transport
Lodestar	Edge plasma stability and turbulence	U Maryland	Transport & turbulence simimulation
MIT	ECW-EBW modeling HHFW modeling	U New Mexico	Fast ion-plasma interactions
		U Washington	CHI research
•		U Wisconsin	NSTX neoclassical modeling

Integration of High $\tau_{\rm E}$ & High β in Solenoid-Free Plasmas for $\Delta t_{\rm pulse}$ >> $\tau_{\rm skin}$ Is a Primary Goal of 5-Year Plan

- 5-Year Plan favorably reviewed by DOE Panel
- Major new tool requirements were identified:
 - Fluctuation diagnostics to enable detailed comparison with theory in high β plasmas
 - Enhanced shaping to improve stability through simultaneous high κ and δ
 - Mode control to allow approach toward "with-wall" limits
 - EBW off-axis CD to keep q > 2 and stabilizes NTM & internal modes
 - Particle control to maintain moderate n_e for CD

FY04-06 Research Milestones Aim to Advance Control and High β Physics

 FY04
 FY05
 FY06

 Exp. Run-Weeks:
 18
 14
 12

1) Transport & Turbulence: How does turbulence cause heat, particle & momentum losses?

(04-2) Measure (05-1) Measure high-k

low-k turbulence turbulence

2) Macroscopic MHD Stability: What limits maximum plasma pressure & bootstrap current?

(05-2) Study plasmas near "with-wall" limit

3) Wave-Particle Interaction: How do electromagnetic waves interact with plasma?

(04-3) Measure ∆J from RF, NBI & ∇p

(05-3) Assess EBW H&CD requirements

(04-5) Characterize EBW emission, estimate H&CD

4) Start-up, Ramp-up and Sustainment: How is plasma magnetic flux generated?

(04-4) Test current (06-1) Test solenoid-free initiation ramp-up to high current

5) Boundary Physics: How to interface fusion plasmas to surrounding materials?

(06-2) Characterize edge of H-mode plasmas

6) Integration: How much external control vs. self-organization is needed?

(04-1) Assess high τ_E & high β_T H-mode for >> τ_E

(05-4) Assess combined

(06-3) Evaluate J_{NI} ~ 100%

 $\text{RF \& NBI effectiveness} \qquad \qquad \text{for } \geq \tau_{\text{skin}}$

FY04-06 Research Milestones under Incremental Plan Will Enable Timely Achievement of the "5-Year" Goal

		FY04		FY05		FY06		
Exp. Run-W	/eeks:	18	-	14	(7)	12	(6)	Incr. Request

1) Transport & Turbulence: How does turbulence cause heat, particle & momentum losses?

(04-2) Measure (05-1) Measure hi-k

low-k turbulence turbulence

2) Macroscopic MHD Stability: What limits maximum plasma pressure & bootstrap current?

(05-2) Study plasmas near (06-4-Incr) Identify tearing modes & onset conditions

3) Wave-Particle Interaction: How do electromagnetic waves interact with plasma?

(04-3) Measure ΔJ from RF, NBI & ∇p

(05-3) Assess EBW H&CD requirements

(04-5) Characterize EBW emission, est. H&CD

4) Start-up, Ramp-up and Sustainment: How is plasma magnetic flux generated?

(04-4) Test current (06-1) Test solenoid-free initiation ramp-up to high current

5) Boundary Physics: How to interface fusion plasmas to surrounding materials?

(05-5-Incr) Characterize edge of H-mode plasmas (06-2-Incr)Assess long-pulse heat & particle control requirements

6) Integration: How much external control vs. self-organization is needed?

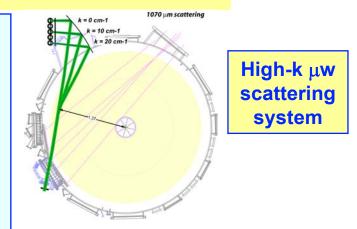
(04-1) Assess hi τ_E & hi β_T H-mode for >> τ_E

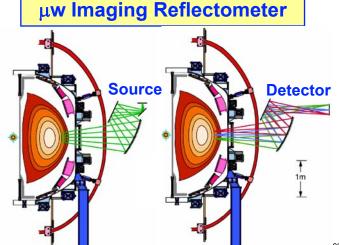
(05-4) Assess combined

(06-3) Evaluate J_{NI} ~ 100%

RF & NBI effectiveness for $\geq \tau_{skin}$

Transport Studies Aim to Characterize Low & High k Turbulence at High β, Low A & Strong Flow


FY04 FY05 FY06

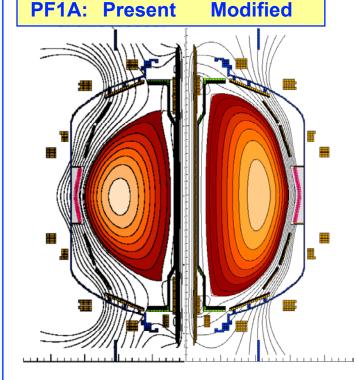

1) <u>Turbulence: How does turbulence cause heat, particle & momentum losses?</u>

(04-2) Measure low-k turbulence (05-1) Measure high-k turbulence

Opportunity: different transport conditions exist where

- $-\chi_e \gg \chi_i$: helpful to high-k turbulence studies
- $-\chi_i \sim \chi_i^{NC}$: stable low-k turbulence
- $-\chi_{\phi} < \chi_{i}$: different from TFTR
- Effects of large β , ρ^* , V_{ϕ} (~0.3 $V_{Alfv\acute{e}n}$), V_{ϕ}' ; L & H-mode
- Tools, measurements and theory comparison
 - FY04: μw reflectometers, FIR interferometer
 - FY05: high-k μw scattering at 300 GHz
 - FY07: μw imaging reflectometer (delayed from FY06)
 - FULL, NLGS2, GTC, GYRO, TRANSP, NCLASS, ...
- ITPA: joint experiments with DIII-D, C-Mod, MAST
 - Comparisons of A, β effects & ITB physics
 - ELMy H-mode with T_e ~ T_i & low input momentum
 - Identity and Similarity tests of H-mode transitions & pedestal physics

MHD Studies Aim to Understand the Physics of β Limiting Modes to Enable Very High β



FY04 FY05 FY06

2) Stability: What limit maximum plasma pressure & bootstrap current?
(05-2) Study plasmas near
"with-wall" limit modes & onset conditions

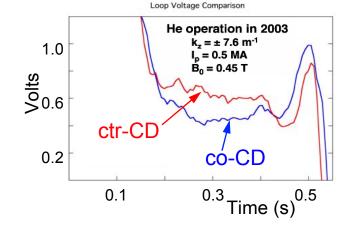
- Opportunity: $\beta_0 \sim 1$, $V_{Alfven} \sim V_{Thermal} \sim 3V_{\phi}$, $V_{\phi}' \sim \gamma_{MHD}$
 - Reached β_T = 35% at κ = 2, δ = 0.8
 - Study RWM, internal mode rotation damping physics
 - Can reach κ =2.55, δ =0.8 with PF1A modification
- Tools, measurements, control & theory comparison
 - FY04: install ex-vessel control coils; test rotation damping via error field reduction
 - FY05: commission & apply active field & RWM control
 - FY06-Incr: identify pressure-limiting tearing mode conditions
 - EFIT-V_φ, VALEN, MARS, M3D, GATO, PEST, DCON
- ITPA: DIII-D, MAST, AUG, JET, JT-60U, C-Mod
 - Compare RWM varying V_{Alfvén}/V_{Thermal}; compare NTM varying A; error field sideband effects
- ICC: relevant to MST, SSPX, FRC high β stability

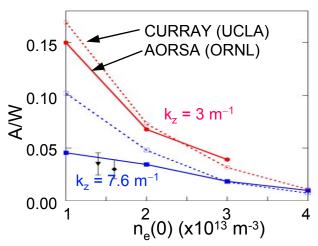
Calculated Equilibria:
κ: 2.0 2.55

HHFW Aims to Test Current Drive in FY04 and Prepares for J_{NI} = 100% Demonstration in FY06

	FY04	FY05	FY06		
3) Wave-Particle Interaction: How do electromagnetic waves interact with plasma?					
	(04-3) Measure ∆J	(05-4) Assess combined	(06-3) Evaluate J _{NI}		
	from RF, NBI & ∇p	RF & NBI effectiveness	~ 100% for ≥ τ_{skin}		

Opportunity: HHFW in overdense plasmas (ST, RFP)


- Observed effective electron heating
- Observed CD @ $k_z = 7.6 \text{ m}^{-1}$
- Modeling indicates 3 m⁻¹ should drive more current
- Assess fast & thermal ion coupling


Tools, measurements & theory comparison

- FY04: commission multi-chord MSE CIF
- CHERS & edge spectroscopy resolve E_r effect
- Tangential polarimetry & X-Ray imaging contribute
- Prepare for RF+NBI (FY05) & J_{NI} = 100% evaluation (FY06)
- RF modeling, 1D & full-wave comparison, scenario simulation: CURRAY, HPRT, TORIC, AORSA, METS

ICC applications

MST, Pegasus, CDX-U (LTX)

EBW Studies Will Establish Physics Basis in FY04-05 for Design of High-Power System in FY06

FY04 FY05 FY06

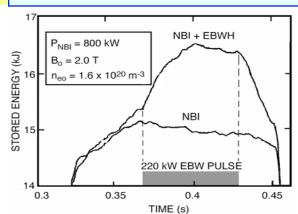
3) Wave-Particle Interaction: How do electromagnetic waves interact with plasma?

(04-5) Characterize EBW emission, estimate H&CD

(05-3) Assess EBW H&CD requirements

W7-AS: O-X-B Data @ 140GHz

Opportunity: EBW in overdense plasmas (ST, RFP)


- Measured thermal emission in CDX-U, NSTX, MAST
- Successful H&CD on W-7AS, COMPASS-D
- Predicted large & localized H&CD profiles in NSTX

Tools, measurements, theory comparison, design


- FY04: X-B & O-X-B emission studies
- FY05: collaborative H&CD tests on MAST @ 28 & 60 GHz and 200 & 700 kW level, respectively
- FY05: EBW test on DIII-D, pending analysis results
- GENRAY, CQL3D (NSTX); OPTPOL, GLOSI (MAST)
- FY06: model H&CD scenarios and begin launcher design

ICC applications

- Pegasus, TST-2, MST, SSPX
- New ST experiments: LATE (Japan), SUNIST (PRC)

NSTX: 135kA @ 28GHz, 3MW, 40% β_T

Solenoid-Free Start-up Will Be Tested Extensively in FY04-06 Towards Future ST and AT Devices

FY04 FY05 FY06

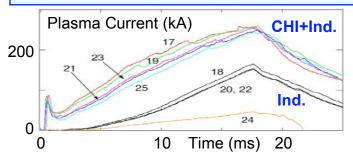
4) Start-up, Ramp-up and Sustainment: How is plasma magnetic flux generated?

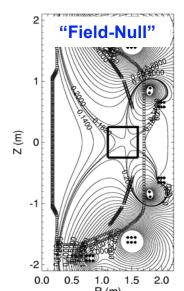
(04-4) Test current initiation

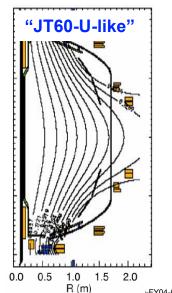
(06-1) Test solenoid-free ramp-up to high current

Opportunity: solenoid-free startup shows promise

- CHI: 100kA on HIT-II; 390kA on NSTX
- Merging-compression: 500 kA on MAST
- ECH, LHCD & NBI: 200→600 kA on JT60-U
- **ECH:** 20 kA, 8 kA on DIII-D, TST-2
- EBW solenoid-free startup to high β_p


Tools, measurements & theory comparison

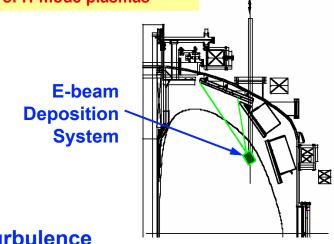

- FY04: Capture CHI plasma by induction, HHFW
- FY04: Test outer PF-coil start-up scenarios, using ECH pre-ionization and HHFW heating
- Collaborative tests with MAST, DIII-D, TST-2
- FY06: test start-up scenarios to high current
- TSC, DINA (DIII-D), EFIT-J_{SOI}, LRDIAG


ITPA & ICC applications

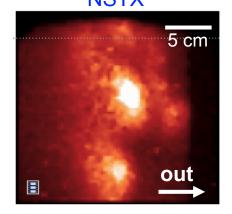
- Save V-s on ITER? \Rightarrow increase inductive I_p, t_{pulse}
- Pegasus, TST-2, LATE, SUNIST

HIT-II captured CHI plasma by induction

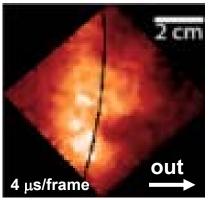
Boundary Physics Studies Aim to Develop and Test Solutions for Long-Pulse High-Performance Plasmas



FY04 FY05 FY06


5) Boundary Physics: How to interface fusion plasmas to surrounding materials?

(06-2) Characterize edge of H-mode plasmas


- Opportunity: $B_p/B_T \sim 1 \Rightarrow >10$ SOL expansion, large B_{in}/B_{out} ratio & ρ^*
 - Divertor footprint larger than R-ratio \Rightarrow favorable SOL at low A and high δ
 - Li: Cost-effective way to control recycling
- Tools, measurements & theory comparison
 - FY04: lithium pellets, supersonic gas jet, fast imaging
 - FY05: lithium coating; more edge TS points
 - FY06: fast IR camera; poloidal CHERS
 - Study ELM & "blob" fluxes
 - Decision: cryo-pump or lithium module
- ITPA: DIII-D, C-Mod, AUG comparisons
 - H-mode, pedestal, edge turbulence
 - Type-I ELM energy flux, χ_{\parallel} , n_{sep} , SOL profiles

Edge Turbulence NSTX

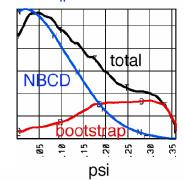
C-Mod

Integration Studies Will Assess Compatibility of Requirements for Stability, Transport, Heating & Current Drive

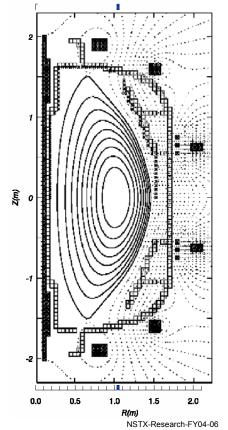
FY04	FY05	FY06

6) Integration: How much external control vs. self-organization is needed?

(04-1) Assess high τ_E & high β_T H-mode for >> τ_E


(05-4) Assess combined RF & NBI effectiveness

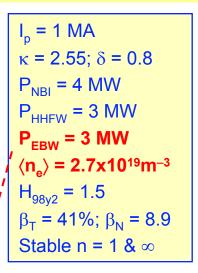
(06-3) Evaluate J_{NI} ~ 100% for $\geq \tau_{skin}$


- Opportunity: High β , low A & low B change the balance of external & internal influences
 - FY04: assess high τ_F at high β
 - FY05: assess combined RF & NBI effectiveness in H&CD
 - FY06: evaluate conditions for 100% noninductive operation using NBI & HHFW only
- Tools, modeling & scenario simulation
 - Guide experiment with extensive modeling & scenario simulation
 - Decisions: multi-MW EBW (FY05); active particle control (FY06)
- ITPA, future ST & ICC application
 - ITER hybrid scenario
 - Larger ST physics requirements

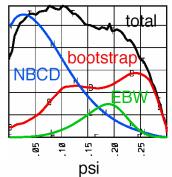
$$\begin{split} &I_{p} = 0.8 \text{ MA} \\ &\kappa = 2.6; \ \delta = 0.38 \\ &P_{NBI} = 6 \text{ MW} \\ &P_{HHFW} = 6 \text{ MW} \\ &P_{EBW} = 0 \\ &\langle n_{e} \rangle = 3x10^{19} \text{m}^{-3} \\ &H_{98y2} = 1.2 \\ &\beta_{T} = 19\%; \ \beta_{N} = 6.8 \\ &\text{Stable n} = 1 \ \& \ \infty \end{split}$$

J_{\parallel} profiles

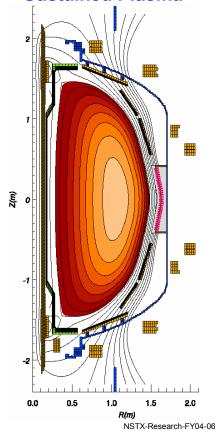
TSC: NBI+HHFW



"Five-Year" Plan Goal Drives Major NSTX Decisions on EBW and Particle Control Capabilities



	FY04	FY05	FY06		
6) Integration: How much external control vs. self-organization is needed?					
	(04-1) Assess high τ_{E} &	(05-4) Assess combined	(06-3) Evaluate J _{NI}		
	high 0 Hanada far >> -	DE 9 NDI offoctiveness	- 4000/ for > -		


- Opportunity: High β , low A & low B change the balance of external & internal influences
 - FY04: assess high τ_F at high β
 - FY05: assess combined RF & NBI effectiveness in H&CD
 - FY06: evaluate conditions for 100% noninductive operation using NBI & HHFW only
- Tools, modeling & scenario simulation
 - Guide experiment with extensive modeling & scenario simulation
 - <u>Decisions</u>: multi-MW EBW (FY05); active particle control (FY06)
- ITPA, future ST & ICC application
 - ITER hybrid scenario
 - Larger ST physics requirements

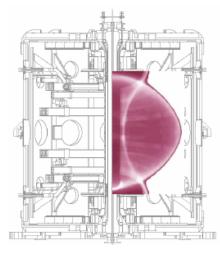
J_{\parallel} profiles

TSC: High-Performance Sustained Plasma

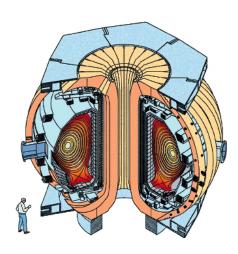
Worldwide NSTX Collaborations are Enhancing Contributions to ITPA-ITER

Extensive collaboration with MAST

- NBI H-mode, ITB, τ_F scaling
- EBW H&CD, start-up (28, 60 GHz)
- Fueling, SOL pedestal studies
- Energetic particle characterization

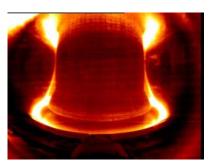

Strong participation in ITPA

- DIII-D, C-Mod: RWM, Fast ion MHD, pedestal, core confinement, edge turbulence, x-ray crystal spectrometry, EBW
- A and β effects: H-mode, ITB, ELM's
 & pedestal, SOL, RWM, NTM


Exploratory ST experiments

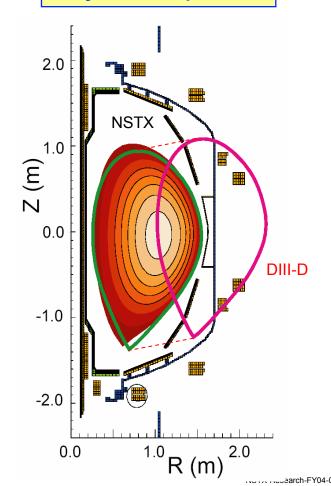
- **Pegasus**: Extreme low A, EBW
- CDX-U/LTX: Li-plasma
- TST-2, LATE, SUNIST: RF start-up, H&CD
- **TS-3,4**: FRC-like β ~1 ST plasmas
- HIT-II/HIT-SI, HIST: CHI physics

MAST (U.K.)


DIII-D (U.S.)

Pegasus (U.S.)

C-Mod (U.S.)


Collaborative Research with DIII-D and C-Mod is a Key Element of the NSTX program

Ongoing Coordinated Research:

- MHD: active mode control; fast ion modes
 - DIII-D: physics of different V_{Alfvén}
- Transport: core confinement & H-mode pedestal
 - DIII-D: similarity studies, with MAST researchers
- Solenoid-free startup
 - DIII-D: PF-only startup tests, with JT-60U researchers
- EBW: mode conversion and deposition offaxis current drive & NTM stabilization
 - DIII-D: Operate with overdense conditions, using 110 GHz gyrotrons & PPPL launcher?
 - Modeling study underway.
- Core measurement, SOL/edge transport & turbulence
 - C-Mod: Fast camera gas puff imaging studies
 - C-Mod: X-ray crystal spectrometer for T_i & T_e

Various Plasma
Shapes Available for
Physics Comparison

NSTX National Team Contributes to Fusion Energy Sciences Along A Broad Front

- **M** NSTX
- NSTX research addresses key scientific issues and supports
 - Fundamental understanding
 - Configuration optimization
 - Burning plasmas through ITPA
 - Physics database toward future ST's
- FY04-06 research aims to advance control and high β physics, the near-term goal of the NSTX 5-Year Research Plan
 - How does turbulence cause heat, particle & momentum losses?
 - What limits maximum plasma pressure & bootstrap current?
 - How do electromagnetic waves interact with plasma?
 - How is plasma magnetic flux generated?
 - How to interface fusion plasmas to surrounding materials?
 - How much external control vs. self-organization is needed?
- Additional investment in EBW and particle control required to develop high β long pulse discharges

Strong contributions to ITPA, and broad collaborations worldwide

NSTX-Research-FY04-06